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ABSTRACT 
 
Many envisioned applications of mobile robotic systems require the robot to navigate in complex urban environments.   
This need is particularly critical if the robot is to perform as part of a synergistic team with human forces in military 
operations.  Historically, the development of autonomous navigation for mobile robots has targeted either outdoor or 
indoor scenarios, but not both, which is not how humans operate.  This paper describes efforts to fuse component 
technologies into a complete navigation system, allowing a robot to seamlessly transition between outdoor and indoor 
environments.  Under the Joint Robotics Program’s Technology Transfer project, empirical evaluations of various 
localization approaches were conducted to assess their maturity levels and performance metrics in different 
exterior/interior settings.  The methodologies compared include Markov localization, global positioning system, Kalman 
filtering, and fuzzy-logic.  Characterization of these technologies highlighted their best features, which were then fused 
into an adaptive solution.  A description of the final integrated system is discussed, including a presentation of the 
design, experimental results, and a formal demonstration to attendees of the Unmanned Systems Capabilities Conference 
II in San Diego in December 2005. 
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1. BACKGROUND 
 
The first significant military use of robotic systems on the battlefield occurred in FY-04, when the Space and Naval 
Warfare Systems Center, San Diego (SSC San Diego) assisted the OSD Joint Robotics Program (JRP) in procuring and 
fielding 163 robots to address the ongoing threat of improvised explosive devices (IEDs) in Iraq and Afghanistan.  The 
number of robotic systems grew to approximately 2000 in FY-05 and is expected to reach 4000 in FY-06.  To date, 
however, all of these robots are strictly teleoperated devices (i.e., remote-controlled) with no onboard intelligence, and 
thus require intense operator involvement and high-bandwidth communications links. 
 
To address these shortcomings, the JRP Technology Transfer Project managed by SSC San Diego seeks to enhance the 
functionality (ability to perform more tasks) and autonomy (with less human intervention) of these teleoperated systems.1  
The objective is to expedite advancement of the technologies needed to produce an autonomous robot that can robustly 
perform in battlefield situations.  Instead of developing new capabilities from scratch, the approach is to assess the 
technology readiness levels (TRLs) of component technologies (i.e., mapping, object recognition, motion-detection-on-
the-move) developed under a variety of past and ongoing R&D efforts (such as the DARPA Tactical Mobile Robot 
program).  The most mature algorithms are integrated and optimized into a cohesive behavior architecture and then 
ported to various platforms used by the warfighter for further evaluation in operational environments. 
 
Contributing sources of component technologies include the Idaho National Laboratory (INL), NASA’s Jet Propulsion 
Laboratory, Carnegie-Mellon University (CMU), Stanford Research Institute International (SRI), University of 
Michigan, Brigham Young University, University of California San Diego, and University of Texas Austin, as well as 
other SSC San Diego projects (i.e., Man Portable Robotic System2 and the ROBART series3).  Starting in FY-03, the 

Pacis, E.B, B. Sights, G. Ahuja, G. Kogut, H.R. Everett, “An adapting localization system for outdoor/indoor 
navigation,” SPIE Proc. 6230: Unmanned Systems Technology VIII, Defense Security Symposium, Orlando FL, 17-20 
April 2006 



approach was to harvest existing indoor navigation technologies developed by 
various players and assess their different approaches to dead reckoning, 
obstacle detection/avoidance, mapping, localization, and path planning.  The 
details of these focus areas will not be discussed in this paper but can be found 
in previous project publications.4  The best features of the more promising 
solutions have now been integrated into an optimal system, giving an operator 
the ability to send an autonomous platform into an unknown indoor area and 
accurately map the surroundings.  An augmented virtuality representation of 
the environment is derived, fusing real-time sensor information with the 
evolving map (Figure 1). 6  In FY-05, the focus was expanded to include 
autonomous outdoor navigation, as well as additional sensor payloads for 
mission-specific applications (such as intruder detection).  All the component 
technologies are integrated under an Intelligence Kernel originally developed 
by INL.  To ensure cross-platform compatibility, the architecture is 
independent of the robot geometry and sensor suite, facilitating easy porting to 
any platform the warfighter uses.  Moreover, the Intelligence Kernel allows 
the robot to recognize what sensors are available at any given time and adjust 
its behavior accordingly. Figure 1.  Virtual model of SSC San

Diego lab space, fused with real-time
visual images, after the robot
autonomously explored and mapped the
area. 

 
The interior mapping capability is based upon a laser-based simultaneous 
localization and mapping (SLAM) algorithm developed by the Stanford 
Research Institute International (SRI).5  SLAM enables a robot to build a map 
of an unknown area while dynamically determining its own position in the 
growing map.  SRI’s original implementation represented the information 
from the robot’s wheel encoders and laser sensor as a network of probabilistic 
constraints linking successive poses of the robot.  The encoders relate one 
robot pose to the next via dead reckoning, and the laser scans are matched to 
provide further constraints between robot poses.  The use of nearby landmarks 
to facilitate matching successive laser scans implied that the SLAM algorithm 
would probably also work in outdoor areas with sufficient prominent features. 
 
This was demonstrated as part of the Robotic Autonomous Countermine 
Experiment, intended to fulfill the U.S. Army Engineer School’s goal to 
demonstrate a team of small unmanned ground vehicles (UGVs) conducting 
semi-autonomous countermine operations.  Experiment 1 took place at INL in 
October 2005, where the UGV was cued to search a bounded area using 
overhead imagery provided by a fixed-wing UAV.  The UGV successfully 
detected, recorded in the map, and marked on the ground the location of all 
buried landmines (Figure 2).  The lane- and mine-marking system was 
designed at SSC San Diego. 
 
The SLAM algorithm was further tested for use in urban areas.  In support of 
the Warfighter’s Associate concept,6 an autonomous indoor/outdoor 
navigation system was derived from existing component technologies, 
including SLAM, to allow a robot to seamlessly navigate in and out of 
buildings in a Military Operations in Urban Terrain  (MOUT) environment.  
Section 2 focuses on the design and implementation of our adaptive-
localization method needed to autonomously navigate in both outdoor and 
indoor environments.  Section 3 presents experimental results during the development and optimization of the integrated 
system, and section 4 describes the formal demonstration in a force-protection scenario.  Section 5 concludes with a 
discussion on planned future extensions of this work. 

Figure 2. CMU Countermine robot
marked the lane and locations of the
buried mines (top).  The foliage along
the sides of the road provided SLAM the
features needed to build a map of the
area searched (bottom).  
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2. SYSTEM DESIGN/IMPLEMENTATION OF ADAPTIVE LOCALIZATION  
 
The extended Kalman filter (EKF) is the proverbial workhorse of the navigation sciences.  We chose to use it because of 
the extensive knowledge already available on the subject and the ease with which it can be ported to various platforms 
with similar dynamic characteristics and sensor suites.  Initial comparisons (discussed in section 3) between a fuzzy-
logic navigation approach based on the University of Michigan’s FLEXNav system were very promising, but the EKF 
was chosen when the need for cross-platform compatibility became imperative.  The EKF is a well studied and 
extensively implemented algorithm, so we will not repeat its formulation here.  For more information, please see CMU’s 
technical report “A 3D State Space Formulation of a Navigation Kalman Filter for Autonomous Vehicles”.7 
 
2.1 Sensors 
 
The EKF is a state observer that relies heavily upon the measurement of related states to produce an accurate estimate of 
the system state.  If too few sensors are used, the resulting state estimate will diverge because the system is 
unobservable.  Also, if the state and sensor noise variances are not accurately modeled, the EKF will not properly filter 
the common noise associated with each sensor, and the state estimation will further diverge from the actual state. 
 
The key states that need to be measured for our particular implementation are: velocity, pitch, roll, and yaw rate.  By 
measuring these four states, an accurate depiction of the robot’s pose can be generated.  However, using more sensors 
and measuring more states will create a more accurate state estimate.  Therefore, the sensors used are as follows: the 
robot’s wheel encoders, Microstrain 3DM-G gyro compass, KVH E-Core rate gyroscope, Novatel GPS, and SLAM.  The 
states chosen to represent our system are as follows: X, Y, Z, Velocity, Pitch (θ), Roll(φ), Yaw(ψ), Yaw rate(β_dot) (See 
Table 1). 
 
Note that the x-axis aligns with east axis, the y-axis aligns with north, and z points upward; a yaw angle of zero degrees 
is associated with true north.   
 

State Sensor 
X GPS UTM East  
  SLAM 
Y GPS UTM North 
  SLAM 

Velocity Wheel encoders 
  GPS 

Pitch 3DM-G compass 
Roll 3DM-G compass 
Yaw 3DM-G compass 

  GPS 
  SLAM 

Yaw speed KVH E-Core gyroscope 
 Table 1.  Sensors used to obtain the robot states.  
 
2.1.1 Wheel Encoders 
 
The wheel encoders were used to calculate the translation velocity of the robot.  This type of measurement typically has 
errors associated with electrical noise, wheel slippage, tire size fluctuation due to temperature changes, and load shifting 
of the vehicle on different terrain.  However, this noise was modeled simply as a fraction of the measured wheel speed 
(less than 5 percent) and a fraction of the measured acceleration.   
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2.1.2 Microstrain 3DM-G Gyro Compass 
 

The pitch, roll, and yaw of the vehicle were measured using this sensor, which combines readings from accelerometers, 
gyroscopes, and magnetometers to calculate a 3-D orientation vector.  The typical noise types associated with this kind 
of sensor are very complicated and not easily modeled.  Therefore, an attitude sensor error must be garnered by 
referencing the manufacturer’s specification sheet for the device, and it will usually contain random bias and drift.  It is 
important to note that the yaw-axis will most likely have more error, as it is susceptible to the local magnetic field, so we 
doubled the yaw noise error estimate compared to the pitch and roll axes. 
 
2.1.3 KVH E-Core Gyroscope 

 
The KVH E-Core gyroscope is a highly accurate fiber-optic rate gyro, that can measure up to 100 degrees per second of 
rotational speed with a resolution of 0.014 degrees per second.  This sensor needs to be accurate, as seen in Borenstein’s8 
work, which shows that the yaw estimate is crucial for accurate pose estimation.  The typical error associated with a 
gyroscope is drift, which can be modeled as a combination of random bias, exponentially correlated error, and random 
walk.  For robots that do not have yaw or yaw rate sensors, the wheel encoders can be used, though it is not 
recommended.  The associated noise can be modeled as a function of the total distance traveled and the total yaw 
rotation. 
 
2.1.4 Novatel GPS 
 
The GPS unit was used to estimate the x and y coordinates of the robot by first aligning the robot local coordinates with 
true north.  Once a reliable GPS fix has been established, a resulting offset can be calculated, which allows the GPS 
coordinates to be converted to local x, y coordinates based on the Universal Transverse Mercator (UTM) representation.  
When operating in an urban environment, the availability of GPS is typically intermittent and often suffers from the 
effects of occlusion and multi-path.  From a dynamic standpoint, it is crucial to realize that not only will the pose 
estimate of the robot always have a small amount of divergence, but the GPS readings will contain drift.  Since the 
length of time that the GPS signal will be lost is relatively short, the amount of GPS drift will be less than the divergence 
of the robots calculated pose. Therefore, the offset to convert the GPS coordinates to local coordinates only need to be 
calculated once, even if the GPS signal is lost and regained several times.  The drift problem will be handled by the EKF, 
as are the problems associated with deciding when to input the data into the filter. 
 
Besides providing a position estimate, the GPS unit also provides yaw and velocity measurements.  However, these 
values cannot be trusted if the velocity of the robot is low, or if the rotational rate of the robot is greater than a couple of 
degrees per second.  Similar to the pose estimate from the GPS unit, the decision to use the yaw and/or velocity 
measurements is made by the filter itself, and based on criteria described in section 2.3. 
 
2.1.5 Simultaneous Localization and Mapping  

 
Unlike GPS, SLAM works well indoors and in cluttered environments, but poorly in open terrain.  By aligning the 
SLAM coordinates with world coordinates using frame transformations (further discussed in section 2.4), the output is 
used to measure the x, y, and yaw states of the robot.  Since the errors associated with SLAM are typically random (ie. 
ladar errors, encoder errors, convergence errors) we simply assume the error is a constant.  Currently, work is being done 
to automatically calculate the standard deviation of the SLAM estimate and disable and re-enable the algorithm based on 
this value.  Also note that SLAM as an input sensor to the EKF was not used in the testing highlighted in this paper, but 
has since been added, properly characterized, and successfully used by the EKF algorithm. Further investigation to 
determine if SLAM should be an input to the EKF or if the EKF should be an input to SLAM is still ongoing. 
 
2.2 Adaptive Filtering 
 
A key philosophy of the Technology Transfer Program is to optimize all software to be easily portable to any robot used 
by the warfighter.  In that light, it was necessary to allow the filter to adapt itself to the dynamics of various robots and 
associated sensor suites.  In order to accomplish this, the Q and R matrices of the filter are alternatively re-calculated 
after each cycle to provide better models of the sensor and state noise. Therefore, the EKF will automatically tune itself, 

Pacis, E.B, B. Sights, G. Ahuja, G. Kogut, H.R. Everett, “An adapting localization system for outdoor/indoor 
navigation,” SPIE Proc. 6230: Unmanned Systems Technology VIII, Defense Security Symposium, Orlando FL, 17-20 
April 2006 



and all that is needed to port the algorithm to any robot is to review a log file that is generated after the robot has been 
driven around for several minutes.  Then the initial values of the sensor and state noise co-variances can be updated 
based on the converged values in the log file. The Q and R matrices are optimized as follows: 

 
First, calculate Q_star: 

Q_star X X_k_plus_1_minus−( ) X X_k_plus_1_minus−( )T⋅ P_k_plus_1_minus+ P− Q−:=  
 
Then, calculate Q, where L_Q is a user-defined constant that adjusts the rate at which the adaptable filter works.  This 
number will be different for every application: 
 

Q Q
1

L_Q






Q_star Q−( )⋅+:=
 

 
 
As you can see, the operation to calculate Q_star takes the square of the difference between the predicted state estimate 
and the final state estimate of each step and subtracts the expected difference.  This value is then added to a moving 
average of Q, which is limited by L_Q. 
 
Now, calculate R_star: 

R_star Y H X⋅−( ) Y H X⋅−( )T⋅ H P_k_plus_1_minus⋅ HT⋅−:=  
 
Then, calculate R: 

R R
1

L_R






R_star R−( )⋅+:=
 

 
The calculation of R_star is similar to that of Q_star, but instead we take the square of the difference in the state 
measurements and the current state estimate and subtract the amount of expected measurement error due to the state 
uncertainty.  This value is then added to a moving average of R, whose rate of change is limited by L_R. 
 
This technique provides a more accurate filter with less need for time-intensive tuning by automatically adjusting the 
state and measurement variance matrices.9  It is important to note that both the Q and R matrices cannot be adapted 
during the same cycle.  Also, using the adaptive technique while the robot is not moving for long periods of time can 
cause the state estimate to become unstable when the robot begins to move again. This is due to the fact that the filter is 
designed around a dynamic model, and it will adapt to a static model while the robot is motionless.  To eliminate this 
problem, the adaptive technique is disabled while the robot is stationary. 
 
2.3 Adding and Removing Sensors 
 
Another goal in developing an enhanced dead reckoning solution was to minimize the impact on the intelligence 
algorithms running on the robot.  This meant that we had to make the EKF smart enough to know when to add and 
remove sensors, and which sensors map to which states.  For example, the intelligence algorithms tell the EKF that the 
UTM Easting and Northing measurements from the GPS sensor are available when it starts, but the EKF knows to not 
use these measurements until a good GPS fix has been established.  This frees the higher level intelligence algorithms 
from having to worry about when to add and remove sensors from the EKF.  Instead, the system tells the filter what 
kinds of sensors are available, and the EKF automatically determines which sensors are the best to use at various times.  
Also, the EKF must know which sensors map to which states.  For example, there is not a UTM easting or northing state, 
so the EKF must know that these values map into the x and y states of the system.  Similar processes take place with the 
compass yaw sensor and the GPS yaw and velocity sensors. 
 
Another important caveat regarding adding and removing sensors is that it is bad practice to completely remove sensors 
from the EKF.  Instead, the standard deviation for the “removed” sensor should be set arbitrarily high, which will cause 
the EKF to ignore the readings from the sensor.  When we attempted to completely remove sensors from the EKF, we 
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found that the algorithm would occasionally become unstable, which was possibly due to the fact that sensors are 
actually coupled to several different states besides just the one they measure, so it is impossible to remove all traces of 
the sensor from the EKF without affecting stability. 

 
The constraints used to determine whether or not we should use GPS as x and y state observers are as follows: 

• Is the number of GPS satellites available above a certain threshold? 
• Is the standard deviation being reported from the GPS unit below a certain threshold? 
• What is the distance between the previous and current GPS readings (i.e., how big is the jump?), and does it 

make sense based on the speed travel? 
• How long have all the previous criteria been met? 

 
When GPS is used as x and y state-measurement inputs to the EKF, the following constraints are used to determine 
whether or not to use the yaw and velocity measurements from the GPS unit: 

• Is the current velocity state of the robot above a certain threshold? 
• Is the current yaw rate state of the robot below a certain threshold? 

 
The criteria used to determine whether or not to input SLAM into to the EKF are as follows: 

• What is the reported standard deviation from the SLAM algorithm? 
• Are the pitch or roll states below certain thresholds? (2-D SLAM does not work well on hills)? 
• Are the scans being returned from the laser showing large open spaces? 
• How long have we been using GPS? (If for a long time, then the robot is probably in open terrain where SLAM 

is not reliable)? 
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Figure 3.  EKF Model uses
the east-north-up (ENU) space
model. 

2.4 Coordinate System 
 
In order to fully comprehend our implementation and experimentation of the 
adaptive EKF algorithm, one must understand the coordinate space compatibility 
complexities behind the various sensors and integration technologies, including the 
communication protocol and the command-and-control system used.  All raw data 
must be defined with the same units, otherwise their numbers are meaningless. To 
emphasize this point, the following are a few examples of some singular 
transformations that were performed to ensure the accurate representation of all data 
in the EKF coordinate space model. 
 
2.4.1 EKF Model 
 
In the EKF model, we use the local tangent plane (LTP) coordinates that represent 
our world as being locally flat and simplify altitude and local-direction 
representation for a vehicle. The specific coordinate space model used here is the 
east-north-up (ENU) model based on the left-handed 3-D coordinate system with the 
y-axis increasing going north, the x-axis increasing going east, the z-axis increasing 
going up, and yaw increasing counter-clockwise (Figure 3). All units are kept in the 
SI system with axis measurement in meters and angles in radians. 
 
2.4.2 Microstrain 3DM-G 
 
This orientation sensor uses a vehicle-relative coordinate space model, north-east-
down (NED) (Figure 4).  The 3DM-G orientation data is read as Euler Angles in 
degrees, providing us with pitch(θ), roll(Φ) and yaw(ψ) angles.  Since we only read 
the orientation angles, a complete transform of the axis is not required. What is required, though, is a clear understanding 
of the model to ensure that the angles increase in the same direction. The only transform used is the negation of the yaw 
angle, which is increasing clockwise. 
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Figure 4.  The compass
uses a north-east-down
(NED) space model.   
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2.4.3 Simultaneous Localization and Mapping (SLAM) 
 
Points are defined in terms of x and y with the origin being the point where the robot 
first begins to navigate. The robot position is defined in terms of {x, y, θ}, with the 
robot starting position as {0, 0, 0}, and x increasing in the forward direction, y 
increasing in the left direction, and θ increasing clockwise (Figure 5). To transform 
SLAM coordinates to fit our EKF model, the initial pitch values for SLAM 
(θ_SLAM_0_rad) and EKF (θ_KF_0_rad) are saved, and our transformed coordinates 
obtained by using the equations below:  
 
rotation_angle_rad 1− θ_KF_0_rad θ_SLAM_0_rad+( )⋅:=  

Y 
(L

ef
t)

X 
(Forward)

Z 
(U

p)

Figure 5.  SLAM space
model. 

 
x_KF 1− 1− y_SLAM⋅ cos rotation_angle_rad( )⋅ x_SLAM sin rotation_angle_rad( )⋅−( ):=

y_KF 1− y_SLAM sin rotation_angle_rad( )⋅ x_SLAM cos rotation_angle_rad( )⋅+:=
 
 
yaw_calc θ_KF_0_rad θ_SLAM_0_rad θ_SLAM_rad+( )−:=  

X 
(N

or
th

)

Y 
(East)

Z 
(D

ow
nw

ar
ds

)

MOCU

Figure 6.  MOCU uses a
north-east-down (NED)
space model. .

 
yaw_calc yaw_calc 2 π⋅−( ) yaw_calc π>( )if

yaw_calc 2 π⋅+( ) yaw_calc π−<( )if

yaw_calc otherwise

:=

 
 
θ_KF_rad yaw_calc:=  
 
All units in SLAM are also kept in the SI system, with axis measurements in meters and angles in radians. 
 
2.4.4 JAUS and Multi-Operator Control Unit 
 
The Joint Architecture for Unmanned Systems10 (JAUS) was used as the communications protocol to interface to the 
Multi-Robot Operator Control Unit (MOCU).11  MOCU is the command and control interface used to allow the operator 
to select and download GPS waypoints to the robot.  In order to address the low frequency bias and drift that the EKF 
cannot readily address, MOCU allows the operator to visually select prominent landmarks (as observed in the robot’s 
video or aerial photograph) to be correlated with known geodetic coordinates.  This generates an offset correction that is 
sent to the robot to compensate for the long term bias error.  MOCU and JAUS both define points with the North-East-
Down coordinate system, where the North position is expressed as latitude, East position as longitude, and Down 
represents the inverse of altitude. The coordinate transforms for this system are relatively simple, since only the z-axis is 
pointing in the opposite direction, but the main challenge of the transform was the unit conversions from UTM to 
latitude and longitude and vice-versa. 
 
The coordinate system measurements for the EKF are in meters and our GPS data is also read in UTM.  With the 
addition of longitude and latitude to our set of units, we had to convert our GPS data from UTM to longitude and 
latitude. The conversion issue does not seem difficult, with a number of different solutions available online.  However, 
due to the nature of our experiment, where the goal was to seamlessly navigate indoors and outdoors, we had to find the 
most robust and consistent conversion method. The rounding of a few decimal numbers from errors after each 
conversion were found to displace the vehicle’s position by a few meters on the map.  Consequently, this might lead the 
operator to try to correct the already accurate position of the vehicle on the map, thereby causing the vehicle to become 
lost. After considerable research and trial implementations of various conversion schemes, we found that the Army 
Technical Manual Method12 gave the best results. The notations used in this solution are very consistent, and the 
formulas are clearly laid out, making the conversions easy to implement and the output of values consistent. 
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3. EXPERIMENTATION RESULTS 
 
The initial tests were used to obtain a metric on the accuracy of both the fuzzy-logic implementation (based on the 
University of Michigan’s FLEXNAV system) and the EKF implementation.  Several tests were conducted over medium 
distances (100-300 meters) using data from the encoders for velocity, 3DM-G for pitch, roll, and yaw, and the KVH gyro 
for yaw rate.  Markings along the path the robot was to follow were placed on the ground over the first 30 meters to 
allow for easy checking of the accuracy of the output of each method after leaving and returning to the same location.  In 
order to test under a worst-case scenario, we used the iRobot ATRV because of its unreliable skid-steer odometry data 
and used non-augmented GPS (ie. non-differential GPS).  The main idea was to test in a scenario that the robot may 
actually encounter in an urban battlefield situation.  Therefore, we chose to include indoor, outdoor-urban, off-road, and 
open terrain settings (Figure 7) into the same test route because the robot would typically encouter all of these 
environments when used in theatre.  These early tests showed that the fuzzy-logic implementation worked as well as, if 
not better than, the EKF (Figure 8).  However, the fuzzy-logic implementation uses a weighted measurement system to 
determine which sensor to use to measure a state. It does not effectively filter the data if there is only one type of sensor 
to measure a given state, whereas the EKF will ignore erroneous data from any sensor.  Also, there is not an easy way to 
provide support for any robot platform or any sensor suite with the fuzzy-logic based system.  Therefore, we chose to use 
the EKF in our integration with the INL Intelligence Kernel, though we may implement some Fuzzy Neural Net 
Reasoning into the final algorithm when determining which sensors to use at different times.  
 

Dirt 
road 

Paved 
road 

Concrete 
driveway 

Start 

Figure 7.  (Left)  Aerial photograph of test site at SSC San Diego.  The red line indicates the usual test route (~285m): start
inside the building and exit into the courtyard between two buildings, continue up the concrete driveway, left onto the paved
road, right onto the dirt road, loop around at the dead end, and return to the indoor starting position.  (Right)  iRobot ATRV
navigating between the two buildings, about to return to the starting position. 

After obtaining the initial metrics of each method, the data from the wheel encoders, SLAM, GPS, and the other 
available sensors were more precisely characterized.  In order to accomplish this, tests of the robot in indoor and outdoor 
urban environments were run.  Results (Figure 9) show that SLAM worked flawlessly, GPS provided poor data, and the 
EKF (with encoder, compass, and gyroscope sensor inputs) performed almost as well as SLAM.  
 
Next, the GPS data was added into the EKF and tested in the combined indoor, urban open-space, off-road route (Figure 
7) that allowed us to measure the effectiveness of each sensor across all environments.  The results (Figure 10) 
confirmed that SLAM becomes highly unreliable in areas that do not have definitive structures that act as good 
landmarks (ie., buildings), but that GPS works well in these areas.  It was also observed that the 2-D SLAM algorithm 
was adversely affected by off-road conditions, such as large pitch and roll of the vehicle and substantive slip due to the 
loose dirt surface.  On the other hand, the EKF algorithm was stable due to the use of the yaw rate gyro and the increase 
in the standard deviation of the encoder velocity readings due to large accelerations when the wheels slipped. 
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Kalman Filter vs. Fuzzy Logic
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Figure 8.    Results comparing an Extended Kalman Filter (blue) and a Fuzzy-logic implementation (pink) using the route in
Figure 7. In this particular test run, the relative errors were 1.17 percent for the EKF and .53 percent for the Fuzzy-logic
implementation. In our long term analysis, Fuzzy-logic initially produced better results, but was not as easily ported across
various platforms as the EKF.   Note: GPS was not used in this early experiment, and the coordinate axis was not aligned
with True North. Y vs. X
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Figure 9.  Test results over half the test route (Figure 7).  Notice the poor GPS data (light blue), and that SLAM (red)
performed slightly better than the EKF (dark blue). Y vs. X
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Figure 10.  Test results comparing the EKF against each of the sensors alone, using the route in Figure 7.  Notice how much
better the EKF (blue) performed compared to SLAM alone (yellow) once the robot reached open terrain (at roughly 20m,
15m).  Also notice that SLAM got off course in open terrain and on the dirt road, possibly due to the unreliable odometry
data (pink) available on the ATRV. The GPS data (light blue) was very accurate while in the open and off-road terrain, but
became useless in the vicinity of buildings. 
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Finally, the system was tested in a MOUT type scenario (Figure 11, left).  This involved navigating in, near, around, and 
between buildings at the Unmanned Systems Branch at SSC San Diego.  The EKF performed almost flawlessly (Figure 
11, right), with a .35 percent relative error over a distance of 593 meters, whereas the SLAM algorithm became utterly 
useless after 100 meters and ended up with an error of about 45 meters.  GPS was intermittently useful depending on 
how cluttered the environment was and how close the robot came to each building.  

Y vs. X
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Figure 11.  Overall route taken (red dotted line) to test the EKF over a 593-meter mixed urban and open-terrain course.
Test results (right) showed the EKF produced a relative error of .35 percent (2.12 meters over 593 meters).  
 

 
4. DEMONSTRATION 

 
In conjunction with the Unmanned Systems Capabilities Conference II in December of 2005, SSC San Diego 
demonstrated a series of collaborative behaviors of multiple autonomous robots in a force-protection scenario.  Stand-
alone sensors detected intruder activity along the shoreline, which prompted the deployment of a USV, UAV, and UGV 
to further investigate.  The UGV (equipped with the adaptive localization method and all the other autonomous behaviors 
hosted under the Intelligence Kernel) was sent into an underground bunker to search for the intruders.  An optimal path 
of approach was first created by the operator selecting a series of waypoints on the aerial map display from MOCU, 
based on recently downloaded overhead imagery.  
 
The UGV was then dispatched to the insertion point by executing autonomous waypoint navigation and collision 
avoidance under remote operator supervision.   Upon arrival at the insertion point, the UGV seamlessly transitioned to 
autonomous navigation mode, relying solely on SLAM as GPS ceased to function due to satellite occlusion.  A real-time 
communications data link was not required as the robot penetrated deeper into the bunker since the robot can continue to 
execute its mission in autonomous fashion.  The intruder was detected (in motion and stationary), as well as a .50-calibre 
machine gun left behind, by utilizing a real-time occupancy change analyzer.13  When communications was restored, a 
copy of the virtual model of the bunker including visual snapshots of the detected intruder and weapon was passed back 
to the operator.  Upon completion of the structure sweep, the robot planned a path back to the entrance and exited the 
bunker, switching back to GPS waypoint navigation.  Figure 12 illustrates the sequence of events during the 
demonstration. 
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Figure 12.  Demonstration of autonomous outdoor/indoor navigation and human-presence detection.  Left to right: 1) GPS
waypoint path sent to ATRV via MOCU to enter the bunker, 2) ATRV moving from the open outdoor environment to the bunker
entrance,  3) augmented virtuality interface embedded with location tags (orange cones) of anomalies found and visual capture of
intruder, 4)  ATRV penetrating the cooridoors autonomously, 5) path planned (green) by robot to exit bunker autonomously. 6)
aerial view showing robot’s executed path outside and inside the bunker. 

 
5. CONCLUSION AND FUTURE WORK 

 
This paper presented a practical navigation solution that can enable a robotic platform to operate alongside a soldier in an 
urban setting.  An adaptive localization method was developed to fuse component technologies for autonomous 
navigation in and out of buildings.  One of the main challenges was to formulate the best algorithm for determining when 
to use each type of sensor depending on the type of operating environment.  Extensive work has also been done to 
transform all the sensor and localization algorithms into a common coordinate space model.  The key accomplishment 
here is, for the first time, the ability to geo-reference any sensor data from an autonomous platform while it is navigating 
indoors, which to our knowledge has not been previously done. 
 
Advances to the SLAM algorithm have been made since the early testing described in this paper that allow input of the 
EKF data and output GPS position, which may facilitate a more useful and reliable navigation system.  In the meantime, 
methods of re-initializing SLAM when the robot determines it is in an urban environment, and disabling and saving the 
output from the SLAM algorithm when entering open terrain, are being investigated.  As humans naturally use their 
vision to localize themselves, machine vision for localization based on camera pose estimation is also under evaluation 
for future integration. 
 
Our effort towards autonomous urban navigation is, in many respects, a “Holy Grail” of unmanned vehicle use in 
battlefield situations.  As more and more soldiers desire the use of a robot in life-threatening situations, the requirement 
for proximal operations is inevitable.  Solving the urban navigation problem opens up the door for further integration of 
autonomous capabilities and natural human-interface methods to realize soldier-robot teams.  
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